Схема для блока питания усилителя нч. Схема импульсного блока питания для усилителя. Схема импульсного блока питания

Представляю вашему вниманию импульсный источник питания для УМЗЧ на популярной микросхеме IR2153.

Данный блок питания обладает следующими достоинствами:

  • Защита от перегрузок и короткого замыкания как в первичной обмотке импульсного трансформатора, так и во вторичных цепях питания.
  • Схема плавного пуска ИБП.
  • Варистор на входе ИБП защищает от повышение сетевого напряжения выше опасного значения и от подачи на вход 380В.
  • Простая и дешевая схема.

Основные технические характеристики ИБП (характеристики приведены для моего конкретного экземпляра):
Долговременная выходная мощность - 300Вт
Кратковременная выходная мощность - 500Вт
Рабочая частота - 50кГц
Выходное напряжение - 2х35В (можно получить любое необходимое выходное напряжение в зависимости от намотки трансформатора).
КПД - не менее 85% (зависит от трансформатора)

Управляющая часть ИБП является стандартной и взята прямиком из даташита на IR2153.
Схема ИБП включает в себя так же: защиту от перегрузок и КЗ. Защита может быть настроена на любой необходимый ток срабатывания с помощью подстроечного резистора - R10. О срабатывании защиты свидетельствует свечение светодиода HL1. При активной защите, в аварийном состоянии ИБП может находится сколько угодно долго, при этом он потребляет ток такой же как и на холостом ходу без нагрузки. В моей версии защита настроена на срабатывание при потреблении от ИБП мощности 300Вт и более. Это гарантирует то, что ИБП не будет перегружен и не выйдет из строя в результате перегрева.В качестве датчика тока в данной схеме используются резисторы включенные последовательно с первичной обмоткой импульсного трансформатора. Это позволяет отказаться от трудоемкого процесса намотки токового трансформатора. При КЗ или перегрузке, когда падение напряжения на R11 достигает заданной величины, такой величины при котором на базе VT1 напряжение станет больше 0,6 - 0,7В, сработает защита и питание микросхемы будет шунтировано на землю. Что в свою очередь отключает драйвер и весь БП в целом. Как только перегрузка или КЗ устранено, питание драйвера возобновляется и блок питания продолжает работу в штатном режиме.

Схема ИБП предусматривает плавный пуск, для этого в ИБП присутствует специальный узел, который ограничивает пусковой ток. Это необходимо для того, чтобы облегчить работу ключам при запуске ИБП. При подключении ИБП в сеть, пусковой ток ограничивается резистором R6. Через данный резистор течет ВЕСЬ ток. Этим током заряжается основная первичная емкость С10 и вторичные емкости. Все это происходит в считанные доли секунд, и когда зарядка завершена и ток потребления снизился до номинального значения, происходит замыкание контактов реле К1 и контакты реле шунтируют R6, тем самым запуская ИБП на полную мощность. Весь процесс занимает не более 1 секунды. Этого времени достаточно чтобы завершились все переходные процессы.

Драйвер запитывается непосредственно от сети, через диод и гасящий резистор, а не после основного выпрямителя от шины +310В как это делают обычно. Такой способ запитки дает нам сразу несколько преимуществ:

1. Снижает мощность рассеиваемую на гасящем резисторе. Что снижает выделение тепла на плате и повышает общий КПД схемы.
2. В отличает от запитки по шине +310В обеспечивает более низкий уровень пульсаций напряжения питания драйвера.

На входе блока питания, сразу после предохранителя установлен варистор. Он служит для защиты от повышения напряжение в сети выше опасного предела. При аварии сопротивление варистора резко падает и происходит короткое замыкание, в следствии которого перегорает предохранитель F1, тем самым размыкая цепь.

Таким вот образом я тестировал ИБП на полной мощности.

В качестве нагрузки у меня выступают 4 керамических, проволочных резистора мощностью 25Вт, погруженные в емкость с "кристально чистой" водой. После часа прохождения тока через такую воду все примеси всплывают наверх и чистая вода превращается в бурую, ржавую жижу. Вода усиленно испарялась и за час испытаний нагрелась практически до кипения. Вода необходима для отвода тепла от мощных резисторов, если кто не понял.

Трансформатор в моем варианте ИБП, намотан на сердечнике EPCOS ETD29. Первичная обмотка проводом 0,8мм2, 46 витков в два слоя. Все четыре вторичные обмотки намотаны тем же проводом в один слой по 12 витков. Может показаться, что сечение провода не достаточно, но это не так. Для работы этого ИБП на питание УМЗЧ этого достаточно, так как средняя потребляемая мощность значительно ниже максимальной, а кратковременные пики тока ИБП без труда отрабатывает за счет емкостей питания. При долговременной работе на резистор, при выходной мощности 200Вт, температура трансформатора не превысила 45 градусов.

Для увеличения выходного напряжение более 45В необходимо заменить выходные диоды VD5 VD6 на более высоковольтные.

Для увеличение выходной мощности необходимо использовать сердечник с большей габаритной мощностью и обмотками, намотанными проводом большего сечения. Для установки другого трансформатора придется изменить рисунок печатной платы.

Печатная плата в готовом виде выглядит так (выполнено ):

Размеры платы 188х88мм. Текстолит я использовал с толстой медью - 50мкм, вместо стандартных 35мкм. Можно использовать медь стандартной толщины. В любом случае не забывайте хорошенько пролудить дорожки.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Драйвер питания и MOSFET

IR2153D

1 В блокнот
VT1 Биполярный транзистор

2N5551

1 В блокнот
VT2 Биполярный транзистор

2N5401

1 В блокнот
VT3 Биполярный транзистор

KSP13

1 Или MPSA13 В блокнот
VT4, VT5 MOSFET-транзистор

IRF740

2 В блокнот
VD1 Стабилитрон

1N4743A

1 13В 1.3Вт В блокнот
VD2, VD4 Выпрямительный диод

HER108

2 Или другой быстрый диод В блокнот
VD3 Выпрямительный диод

1N4148

1 В блокнот
VD5, VD6 Диод Шоттки

MBR20100CT

2 Или другой на соответствующее напряжение и ток В блокнот
VDS1 Выпрямительный диод

1N4007

4 В блокнот
VDS2 Диодный мост

RS607

1 В блокнот
VDR1 Варистор MYG14-431 1 В блокнот
HL1 Светодиод Красный 5мм 1 Только красный! Другие цвета не допустимы! В блокнот
K1 Реле TIANBO HJR-3FF-S-Z 1 Катушка 12В 400Ом В блокнот
R1 Резистор 0,25Вт

8.2 кОм

1 В блокнот
R2 Резистор 2Вт

18 кОм

1 В блокнот
R3 Резистор 0,25Вт

100 Ом

1 В блокнот
R5 Резистор 0,25Вт

47 кОм

1 В блокнот
R6 Резистор 2Вт

22 Ом

1 В блокнот
R4, R7 Резистор 0,25Вт

15 кОм

2 В блокнот
R8, R9 Резистор 0,25Вт

33 Ом

2 В блокнот
R10 Резистор подстроечный

3.3 кОм

1 Многооборотный

Всем доброго времени. Позвольте представить силовой инвертор для питания мощного аудиоусилителя. К сожалению, особенно хорошо повторяемых. Поэтому решено было сделать такой источник питания с нуля. Потребовалось немало времени, чтобы проектировать, построить и протестировать этот ИБП. И вот, проведя последние испытания (все тесты прошли успешно) можно сказать что проект закончен и его можно выставить на суд уважаемой радиолюбительской аудитории сайта 2 Схемы.ру

Проект этого инвертора отлично подходит для , собственно для него он и разрабатывался. Преобразователь не сложен и должен быть успешно собран не слишком продвинутыми электронщиками. Для запуска не требуется даже осциллограф, но конечно это было бы полезно. Основа схемы источника питания — м/с TL494.

Он имеет защиту от короткого замыкания и должен обеспечить непрерывную мощность 250 Вт. Преобразователь также имеет дополнительное выходное напряжение +/- 9..12 В, которое будет использоваться для питания предусилителя, вентиляторов и т.д.

Импульсный БП для усилителя — схема

Преобразователь выполнен в соответствии с этой схемой. Размеры платы 150×100 мм.

Инвертор состоит из нескольких базовых модулей, присутствующих в большинстве похожих БП, таких как блок питания ATX. Предохранитель, термистор и сетевой фильтр, состоящий из C21, R21 и L5, идут к источнику питания переменного тока 220 В. Затем выпрямительный мост D26-D29, входные конденсаторы инвертора C18 и C19 и силовые транзисторы Q8 и Q9 для переключения напряжения на трансформаторе. Силовые транзисторы управляются с помощью дополнительного трансформатора T2 одним из самых популярных ШИМ-контроллеров — TL494 (KA7500). Трансформатор тока Т3 для измерения выходной мощности последовательно соединен с первичной обмоткой. Трансформатор T1 имеет две разделенные вторичные обмотки. Одна из них формирует напряжение 2×35 В, а другая 2×12 В. На каждой из обмоток есть фаст диоды D14-D17 и D22-D25, которые в общей сложности образуют 2 выпрямительных моста.

После нагрузки линии +/- 34 В резистором 14 Ом, напряжение падает до +/- 31 В. Это довольно хороший результат для такого небольшого ферритового сердечника. Через 5 минут диоды D22-D25, основной трансформатор и MOSFET нагревались до температуры порядка 50C, что вполне безопасно. После подключения двух каналов TDA7294 напряжение упало до +/- 30 В. Инверторные элементы нагревались подобно резистивной нагрузке. После экспериментов выходная цепь оснащена конденсаторами 2200uF и дросселями 22uH / 14A. Падение напряжения немного выше, чем в случае с 6.8uH, однако их использование явно уменьшает нагрев МОП-транзисторов.

Выходное напряжение под нагрузкой обоих выходов с лампочками мощностью 20 Вт:

Принцип работы импульсного блока питания

Напряжение 220 В выпрямляется мостом с диодами D26-D29. Входные конденсаторы C18 и C19 заряжаются до общего напряжения 320 В, а поскольку инвертор работает в полумостовой системе, они делят их на половину, что дает 160 В на конденсатор. Это напряжение дополнительно уравновешивается резисторами R16 и R17. Благодаря этому разделению можно подключить трансформатор Т1 к одному каналу. Тогда потенциал между конденсаторами обрабатывается как масса, один конец первичной обмотки подключен к +160 В, другой к -160 В. Напряжение переключения первичной обмотки трансформатора Т1 осуществляется с помощью переменного транзистора N-MOSFET Q8 и Q9.

Конденсатор C10 и первичная обмотка трансформатора тока T3 расположены последовательно с первичной обмоткой. Конденсатор связи не нужен для функционирования схемы, но он играет очень важную роль — защищает от несбалансированного потребления энергии от входных конденсаторов и, следовательно, перед зарядкой одного из них до более чем 200 В. Трансформатор тока Т3, также расположенный последовательно с первичной обмоткой, действует как защита от короткого замыкания. Трансформатор тока обеспечивает гальваническую развязку и позволяет измерять величину тока, уменьшенную до точности ее передачи. Его задача — информировать контроллер о величине тока, протекающего через первичную обмотку T1.

Параллельно с первичной обмоткой основного трансформатора имеется так называемая схема гашения импульсов, которую образуют C13 и R18. Она подавляет всплески напряжения, возбуждаемые при переключении силовых транзисторов. Они не опасны для МОП-транзисторов, поскольку их встроенные диоды эффективно защищают от перенапряжения на стоках. Однако всплески напряжения могут отрицательно влиять на эффективность инвертора, поэтому важно их устранить.

Силовые МОП-транзисторы не могут управляться напрямую от контроллера из-за изменения потенциала верхнего транзисторного источника. Транзисторы управляются с помощью специального трансформатора Т2. Это обычный импульсный трансформатор, работающий в двухтактном режиме, открывающий силовые транзисторы. Управляющий трансформатор Т2 имеет на входе набор элементов управления напряжением на обмотках, которые помимо генерирования напряжения, продиктованного контроллером, защищают от возникновения размагничивающего напряжения сердечника. Неконтролируемое напряжение размагничивания удерживало бы транзистор открытым. Элементами, непосредственно ответственными за устранение напряжения размагничивания, являются диоды D7 и D9, а также транзисторы Q3 и Q5. Во время простоя, когда оба МОП-транзистора закрыты, ток протекает через D7 и Q5 (или D9 и Q3) и поддерживает напряжение размагничивания около 1,4 В. Это напряжение безопасно и не может открыть силовой транзистор.

Осциллограмма напряжения на входах MOSFET:

На осциллограмме можно четко видеть момент, когда сердечник ​​перестает размагничиваться диодами D7 и D8 (D6 и D9) и начинает намагничиваться в противоположном направлении транзисторами Q3 и Q4 (Q2 и Q5). В фазе размагничивания сердечника напряжение на затворе Т2 достигает 18 В, а на фазе намагничивания оно падает примерно до 14 В.
Почему не использован один из драйверов типа IR? Прежде всего управляющий трансформатор более надежный, более предсказуемый. IR-драйверы очень капризны и подвержены ошибкам.

На вторичной обмотке основного трансформатора Т1 генерируется переменное напряжение, поэтому необходимо его выпрямить. Роль выпрямителя играют выпрямительные фаст диоды, генерирующие симметричное напряжение. Выходные дроссели расположены за диодами — их присутствие влияет на эффективность инвертора, подавляя всплески заряжающие выходные конденсаторы при включении одного из силовых транзисторов. Далее выходные конденсаторы с резисторами предварительной нагрузки, которые препятствуют подъёма напряжения до слишком высоких значений.

Контроллер импульсного ИП

Контроллер является основой инвертора, поэтому опишем его более подробно. В инверторе использован контроллер TL494 с установленной частотой работы такой же, как и в блоках питания ATX, то есть 30 кГц. Инвертор не имеет стабилизации выходного напряжения, поэтому контроллер работает с максимальным коэффициентом заполнения импульсов, который составляет 85%. Контроллер оснащен системой плавного пуска, состоящей из элементов C5 и R7. После запуска инвертора схема обеспечивает плавное увеличение коэффициента заполнения начиная с 0%, что устраняет всплеск зарядки выходных конденсаторов. TL494 может работать от 7 В, и такое напряжение, подающее буфер управляющего трансформатора Т2, вызывает генерацию напряжения на затворах порядка 3 В. Такие не полностью открытые транзисторы выдадут десятки вольт, что приведет к огромным потерям мощности и существует высокая вероятность превышения опасного предела. Чтобы предотвратить это, сделана защита от слишком высокого падения напряжения. Она состоит из резисторного делителя R4 — R5 и транзистора Q1. После того как напряжение падает до 14,1 В, Q1 разряжает конденсатор плавного пуска, тем самым уменьшая заполнение до 0%.

Другая функция контроллера — защитить инвертор от короткого замыкания. Информация о токе первичной обмотки получается контроллером через трансформатор тока Т3. Ток вторичной обмотки Т3 протекает через резистор R9, на котором падает небольшое напряжение. Информация о напряжении на R9 через потенциометр PR1 поступает на усилитель ошибки TL494 и сравнивается с напряжением резисторного делителя R1 и R2. Если контроллер распознает напряжение выше 1,6 В на потенциометре PR1, он закрывает транзисторы до того, как они пересекут опасный предел и фиксируется через D1 и R3. Силовые транзисторы остаются закрытыми до тех пор, пока инвертор не будет перезапущен. К сожалению, эта защита работает правильно только на линии +/- 35 В. Линия +/- 12 В намного слабее и в случае короткого замыкания может быть недостаточно тока, чтоб защита сработала.

Источник питания контроллера — безтрансформаторный с использованием сопротивления конденсатора. Два конденсатора C20 и C24 потребляют реактивную энергию от сети, и, следовательно, заставляя ток течь, они заряжают фильтрующий конденсатор C1 через выпрямитель D10-D13. Стабилитрон DZ1 защищает от слишком высокого напряжения на C1 и стабилизирует их при 18 В.

Импульсные трансформаторы в БП

Качество и производительность импульсного трансформатора влияют эффективность всего преобразователя и выходное напряжение. Однако трансформатор выполняет функцию не только преобразования электричества, но также обеспечивает гальваническую изоляцию от сети 220 В и, таким образом, оказывает большое влияние на безопасность.

Вот как правильно сделать такой трансформатор. Прежде всего должен быть ферритовый сердечник. Он не может иметь воздушный зазор, его половинки должны отлично соединяться друг с другом. Теоретически здесь можно использовать тороидальный сердечник, но сделать хорошую изоляцию и обмотку будет довольно нелегко.

Рекомендуем брать основной ETD34, ETD29 в крайнем случае, но тогда максимальная непрерывная мощность будет составлять не более 180 Вт. Они стоят немного, поэтому лучшим решением будет получить поврежденный блок питания ATX. На сгоревших источниках питания от ПК в дополнение ко всем необходимым трансформаторам содержится ещё много полезных элементов, в том числе сетевой фильтр, конденсаторы, диоды, а иногда и TL494 (KA7500).

Трансформаторы должны быть осторожно выпаяны с платы блока питания ATX, предпочтительно с помощью термофена. После распайки не пытайтесь разобрать трансформатор, потому что он ​​сломается. Трансформатор следует класть в воду и кипятить. После 5 минут нужно осторожно захватив половинки сердечника через ткань, разделить. Если они не хотят расходиться, не тяните сильно — сломаете! Положить обратно и варите еще 5 минут.

Процесс намотки основного трансформатора должен начинаться с подсчета количества провода, который будет намотан. Из-за постоянной рабочей частоты и заданной максимальной индукции, количество обмоток первички зависит только от площади поперечного сечения основного столба ферритового сердечника. Максимальная индукция ограничена 250 мТ из-за работы в полумостовом режиме — здесь асимметрия намагниченности проста.

Формула для вычисления числа витков:

n = 53 / Qr,

  • Qr — площадь поперечного сечения основного стержня сердечника, приведенного в см2.

Таким образом, для сердечника с поперечным сечением 0,5 см2 необходимо наматывать 106 витков, а для сердечника с поперечным сечением 1,5 см2 потребуется только 35. Помните, что не стоит наматывать половину витка — всегда округлите до одного в плюс. Расчет количества обмоток вторички такой же, как и для любого другого трансформатора — отношение выходного напряжения к входному напряжению в точности равно отношению количества вторичных обмоток к числу обмоток первички.

Следующий шаг — рассчитать толщину проводов обмоток. Самое важное, что следует учитывать при расчете толщины проводов, — это необходимость заполнить все окно ядра проволокой — от этого зависит магнитное соединение обмоток трансформатора, и, следовательно, падение выходного напряжения. Полное поперечное сечение всех проводов, проходящих через окно сердечника, должно составлять около 40-50% поперечного сечения основного окна (основное окно — место, где провод проходит через сердечник). Если вы впервые мотаете трансформатор, нужно приблизиться к этим 40%. В расчетах также должны учитываться токи, протекающие через поперечное сечение обмоток. Обычно плотность тока составляет 5 А / мм2, и это значение не стоит превышать, использование более низких плотностей тока является желательным. При моделировании ток первичной стороны составляет 220 Вт / 140 В = 1,6 А, поэтому сечение провода должно быть 0,32 мм2, значит его толщина составит 0,6 мм. На вторичной стороне ток 220 Вт / 54 В будет равен 4,1 А, что приводит к поперечному сечению 0,82 мм и реальной толщине провода 1 мм. В обоих случаях учитывалось максимальное падение напряжения при загрузке. Следует также помнить, что из-за скин-эффекта импульсных трансформаторов толщина провода ограничена рабочей частотой — в нашем случае на 30 кГц максимальная толщина провода составляет 0,9 мм. Вместо провода толщиной 1 мм лучше использовать два более тонких провода. После расчета количества катушек и проводов проверьте, соответствует ли расчетное заполнение медного окна 40-50%.

Первичная обмотка трансформатора должна быть размещена в двух частях. Первая часть первички (из 35 витков) мотается как первая, на пустой каркас. Необходимо сохранить направление обмотки к каркасу — вторая часть обмотки должна быть намотана в том же направлении. После намотки первой части необходимо припаять другой конец к переходному, укороченному штифту, который не входит в плату. Затем наложите 4 слоя изоляционной ленты на обмотку и намотайте всю вторичную обмотку — это означает метод намотки. Это улучшает симметрию обмоток. Следующая вторичная обмотка для напряжения +/- 12 В может быть намотана непосредственно на обмотку +/- 35 В в местах, где было сохранено небольшое количество свободного места, а затем полностью изолирована 4 слоями изоляционной ленты. Конечно также необходимо изолировать места, где концы обмоток приводятся к штифтам корпуса. В качестве последней обмотки намотайте вторую часть первичной обмотки, обязательно в том же направлении, что и предыдущий. После намотки можно изолировать последнюю обмотку, но не обязательно.

Когда обмотки готовы, сложите половинки сердечника. Лучшее и проверенное решение — это соединение изолентой с капелькой клея. Несколько раз обматываем сердечник изоляционной лентой.

Управляющий трансформатор сделан как и любой другой импульсный трансформатор. В качестве сердечника можно использовать небольшой EE / EI, полученный от блоков питания ATX. Также можете купить тороидальный сердечник TN-13 или TN-16. Количество обмоток зависит, как обычно, от поперечного сечения сердечника.

В случае тороидальных формула такая:

n = 8 / Qr,

  • где n — количество обмоток первичной обмотки,
  • Qr — площадь поперечного сечения сердечника, приведенная в см2.

Вторичные обмотки должны быть намотаны с таким же количеством витков, что и первичные, допускаются только незначительные отклонения. Поскольку трансформатор будет управлять только одной парой МОП-транзисторов, толщина провода не важна, его минимальная толщина составляет менее 0,1 мм. В этом случае 0,3 мм. Первая половина первичной обмотки должна быть намотана последовательно — изоляционный слой — первая вторичная обмотка — изоляционный слой — вторая вторичная обмотка — изоляционный слой — вторая половина первичной обмотки. Направление обмотки обмоток очень важно, здесь MOSFET-ы необходимо включать поочередно, а не одновременно. После намотки соединяем сердечник так же, как и в предыдущем трансформаторе.

Трансформатор тока похож на вышеуказанные. Количество катушек здесь произвольно, в принципе, достаточно количества обмоток вторичной обмотки:

n = 4 / Qr,

  • где n — количество обмоток вторичной обмотки,
  • Qr — площадь поперечного сечения окружности сердечника, приведенная в см2.

Но поскольку токи тут очень малы, лучше всегда использовать большее количество витков. С другой стороны, более важно поддерживать соответствующее соотношение количества витков обеих обмоток. Если решите изменить это соотношение, придется отрегулировать значение резистора R9.

Вот формула для вычисления R9 в зависимости от количества витков:

R9 = (0.9Ω * n2) / n1,

  • где n2 — количество обмоток вторичной обмотки,
  • n1 — количество обмоток первичной обмотки.

С изменением R9 также необходимо изменить C7 соответственно. Трансформатор тока легче наматывать на тороидальный сердечник, рекомендуем TN-13 или TN-16. Тем не менее, вы можете сделать трансформатор на Ш-сердечника. Если намотаете трансформатор на тороидальный сердечник, сначала намотайте вторичную обмотку большим количеством витков. Затем изоляционную ленту и, наконец, первичную обмотку проволокой толщиной 0.8 мм.

Описание элементов схемы

Почти все элементы можно найти в блоке питания ATX. Диоды D26-D29 с напряжением пробоя 400 В, но лучше взять немного выше, по меньшей мере 600 В. Готовый выпрямитель можно найти в блоке питания ATX. Диодные мосты для питания контроллера также целесообразно применять не менее 600 В. Но они могут быть дешевыми и популярными 1N4007 или похожими.

Стабилитрон, ограничивающий напряжение питания контроллера, должен выдерживать мощность 0,7 Вт, поэтому его номинальная мощность должна составлять 1 Вт или более.

Конденсаторы C18 и C19 могут использоваться с другой емкостью, но не менее 220 мкФ. Емкость более 470 мкФ также не должна использоваться из-за излишне увеличенного тока при включении инвертора в сеть и больших размеров — они могут просто не влезть на плату. Конденсаторы C18 и C19 также находятся в каждом блоке питания ATX.

Силовые транзисторы Q8 и Q9 — очень популярные IRF840, доступные в большинстве электронных магазинов по 30 рублей. В принципе, вы можете использовать другие МОП-транзисторы на 500 В, но это повлечет изменение резисторов R12 и R13. Установленные на 75 Ом обеспечивают время открытия / закрытия затвора около 1 мкс. В качестве альтернативы, их можно заменить либо на 68 — 82 Ома.

Буферы перед входами MOSFET и управляющим трансформатором I, на транзисторах BD135 / 136. Здесь могут использоваться любые другие транзисторы с напряжением пробоя выше 40 В, такие как BC639 / BC640 или 2SC945 / 2SA1015. Последний может быть выдран из блоков питания ATX, мониторов и т. д. Очень важным элементом инвертора является конденсатор C10. Это должен быть полипропиленовый конденсатор, адаптированный к большим импульсным токам. Такой конденсатор находится в блоках питания ATX. К сожалению, иногда он является причиной отказа источника питания, поэтому нужно тщательно его проверить прежде чем паять в схему.

Диоды D22-D25, которые выпрямляют напряжение +/- 35 В, использованы UF5408, подключенные параллельно, но лучшим решением было бы использовать одиночные диоды BY500 / 600, которые имеют более низкое напряжение падения и более высокий номинальный ток. Если возможно, эти диоды должны быть спаяны на длинных проводах — это улучшит их охлаждение.

Дроссели L3 и L4 намотаны на тороидальные порошковые сердечники из источников питания ATX — они характеризуются преобладающим желтым цветом и белой окраской. Достаточны сердечники диаметром 23 мм, 15-20 витков на каждом из них. Однако испытания показали, что они не нужны — инвертор работает и без них, достигает своей мощности, но транзисторы, диоды и конденсатор C10 становятся более горячие из-за импульсных токов. Дроссели L3 и L4 повышают эффективность инвертора и снижают частоту отказов.

Выпрямители D14-D17 +/- 12 В оказывают большое влияние на эффективность этой линии. Если эта линия будет питать предусилитель, дополнительные вентиляторы, дополнительный усилитель для наушников и, например, индикатор уровня, диоды должны использоваться по крайней мере на 1 A. Однако, если линия +/- 12 В будет питать только предусилитель, который тянет до 80 мА, даже можно использовать тут 1N4148. Дроссели L1 и L2 практически не нужны, но их присутствие улучшает фильтрацию помех от электросети. В крайнем случае вместо них можно использовать резисторы на 4,7 Ом.

Ограничители напряжения R22 и R23 могут состоять из серии силовых резисторов, соединенных последовательно или параллельно, чтобы получить один резистор с более высокой мощностью и соответствующее сопротивление.

Запуск и настройка инвертора

После травления плат начните сборку элементов, начиная от самых маленьких до самых больших. Необходимо припаять все компоненты, кроме дросселя L5. После завершения сборки и проверки платы установите потенциометр PR1 в крайнее левое положение и подключите сетевое напряжение к разъему INPUT 220 В. На конденсаторе C1 должно присутствовать напряжение 18 В. Если напряжение останавливается примерно на уровне 14 В, это означает проблему управления трансформатором или силовыми транзисторами, то есть короткое замыкание в цепи управления. Владельцы осциллографа могут проверить напряжение на транзисторных затворах. Если контроллер работает правильно, проверьте правильность переключения MOSFET.

После включения питания 12 В и источника питания контроллера на линии +/- 35 В должно появиться +/- 2 В. Такое дело означает, что транзисторы контролируются должным образом, поочередно. Если лампочка на блоке питания 12 В была включена и на выходе не было напряжения, это означало бы, что оба силовых транзистора открываются одновременно. В этом случае управляющий трансформатор должен быть отсоединен, а провода одной из вторичных обмоток трансформатора должны быть поменяны. Далее припаять трансформатор назад и повторить попытку с источником питания 12 В и лампой.
Если тест пройдет успешно и получим на выходе +/- 2 В, можно отключить источник питания лампы и припаять индуктивность L5. С этого момента инвертор должен работать от сети 220 В через лампу на 60 Вт. После подключения к сети лампочка должна кратковременно мигнуть и немедленно полностью отключиться. На выходе должно появиться +/- 35 и +/- 12 В (или другое напряжение в зависимости от соотношения оборотов трансформатора).

Загрузить их небольшой мощностью (например от электронной нагрузки) для тестирования и лампочка на входе начнет немного светиться. После этого теста нужно переключить инвертор непосредственно на сеть, а на линию +/- 35 В подключить нагрузку с сопротивлением около 20 Ом для проверки мощности. PR1 следует отрегулировать так, чтоб инвертор не отключается после зарядки нагревателя. Когда инвертор начнет нагреваться, вы можете проверить падение напряжения на линии +/- 35 В и рассчитать выходную мощность. Для проверки силовой мощности инвертора достаточно 5-10-минутного теста. За это время все компоненты инвертора смогут нагреться до их номинальной температуры. Стоит измерить температуру радиатора MOSFET, она не должна превышать 60C при температуре окружающей среды 25C. Наконец, необходимо нагрузить инвертор усилителем и установить потенциометр PR1 как можно больше влево, но чтобы инвертор не выключался.

Инвертор может быть адаптирован к любым потребностям по питанию различных УМЗЧ. При проектировании пластины старались, чтобы она была как можно более универсальной, для монтажа различных типов элементов. Расположение трансформатора и конденсаторов позволяет монтировать довольно большой радиатор МОП-транзисторов по всей длине платы. После надлежащего изгиба выводов диодных мостов, их можно установить в металлический корпус. Увеличение теплоотвода позволяет увеличить мощность преобразователя теоретически до 400 Вт. Затем необходимо использовать трансформатор на ETD39. Для этого изменения конденсаторы C18 и C19 требуются на 470 мкФ, C10 на 1.5-2.2 мкФ и использование 8 диодов BY500.

Схема относительно просто и представляет собой двухполярный стабилизированный блок питания. Плечи блока питания зеркальны, поэтому схемы абсолютно симметрична.

Технические характеристики блока питания:
Номинальное входное напряжение: ~18...22В
Максимальное входное напряжение: ~28В (ограничено напряжение конденсаторов)
Максимальное входное напряжение (теоретически): ~70В (ограничено максимальным напряжением выходных транзисторов)
Диапазон выходных напряжений (при ~20В на входе): 12...16В
Номинальный выходной ток (при выходном напряжении 15В): 200мА
Максимальный выходной ток (при выходном напряжении 15В): 300мА
Пульсации напряжения питания (при номинальном выходном токе и напряжении 15В): 1,8мВ
Пульсации напряжения питания (при максимальном выходном токе и напряжении 15В): 3,3мВ

Данный блок питания можно использовать для питания предварительных усилителей. БП обеспечивает довольно низкий уровень пульсаций напряжения питания, при довольно большом (для предварительных усилителей) токе.

В качестве аналогов транзисторов MPSA42/92 можно применить транзисторы KSP42/92 или 2N5551/5401. Не забывайте сверять цоколевку.
Транзисторы BD139/BD140 можно заменить на BD135/136 или на другие транзисторы с аналогичными параметрами, опять же про цоколевку не забываем.

Транзисторы VT1 и VT6 должны быть установлены на теплоотводе, место для которого предусмотрено на печатной плате.

В качестве стабилитронов VD2 и VD3 можно применять любые стабилитроны на напряжение 12В.

Очень часто бывает что у радиолюбителя есть трансформатор, но только с одной обмоткой, а необходимо получить на выходе двухполярное напряжение. Именно для этих целей можно применить следующую схему:

Схема отличается своей простотой и универсальностью. На вход схемы можно подавать переменное напряжение в широком диапазоне, ограниченном только лишь допустимым напряжением диодов моста, допустимым напряжением конденсаторов питания и напряжением КЭ транзисторов. Выходное напряжение каждого из плеч будет равно половине общего напряжения питания или (Uвх*1,41)/2, например: при входном переменном напряжении 20В, выходное напряжение одного плеча будет равно (20*1,41)/2=14В.

В качестве транзисторов VT1 и VT2 можно применять ЛЮБЫЕ комплементарные транзисторы, следует только не забывать о цоколевке. Хорошими вариантами замены могут быть MPSA42/92, KSP42/92, BC546/556, КТ3102/3107 и так далее. Следует так же учитывать при замене транзисторов на аналоги их максимальное допустимое напряжение КЭ, оно должно быть не менее выходного напряжения плеча.

В своей практике для питания УМЗЧ я люблю применять для питания УМЗЧ трансформаторы с 4мя одинаковыми вторичными обмотками, в частности трансформатор ТА196, ТА163 и аналогичные. При использовании таких трансформаторов удобно использовать в качестве выпрямителя не мостовую, а двухполупериодовую полу-мостовую схему. Схема самого блока питания представлена ниже:

Для данной схемы можно применять не только трансформаторы серии ТА, ТАН, ТПП, ТН, но и любые другие трансформаторы с 4мя одинаковыми по напряжению обмотками.

На основе трансформатор ТА196 или других трансформаторов с 4мя вторичными обмотками можно организовать следующую схему:

Напряжение +/-40В (или другое, в зависимости от напряжения на обмотках вашего трансформатора) используется для питания усилителя мощности. Шины +/-15В можно использовать для питания предусилителя и входного буфера. Шину +12В можно использовать для вспомогательных нужд, например: для питания вентилятора, защиты или других не требовательных к качеству питания устройств.

В качестве стабилитрона 1N4742 можно применять любой другой на напряжение 12В, вместо 1N4728 - на напряжение 3,3В.

Вместо транзисторов BD139/140 можно использовать любую другую комплементарную пару транзисторов средней мощности на ток 1-2А. Транзисторы VT1, VT2 и VT3 необходимо устанавливать на радиатор.

Нумерация выводов соответствует нумерации выводов трансформатора ТА196 и аналогичных.

Фотографии некоторых из представленных блоков питания.

Ко всем блокам питания прилагаются проверенные 100% рабочие печатные платы.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Схема 1: Маломощный стабилизированный блок питания для предусилителей
VT1 Биполярный транзистор

BD139

1 Аналог:BD135 В блокнот
VT6 Биполярный транзистор

BD140

1 Аналог:BD136 В блокнот
VT2, VT3 Биполярный транзистор

MPSA42

2 Аналог:KSP42, 2N5551 В блокнот
VDS1, VDS2 Выпрямительный диод

1N4007

8 В блокнот
VT4, VT5 Биполярный транзистор

MPSA92

2 Аналог:KSP92, 2N5401 В блокнот
VD1, VD4 Выпрямительный диод

1N4148

2 В блокнот
VD2, VD3 Стабилитрон

1N4742

2 Любые стабилитроны на напряжение 12В В блокнот
C1, C6, C15, C18 Конденсатор 2.2 мкФ 4 Керамика В блокнот
C2-C5, C16, C17, C19, C20 Конденсатор 1000 мкФ 8 Электролит на 50В В блокнот
C7, C9, C21, C23 Конденсатор 100 мкФ 4 Электролит на 50В В блокнот
C8, C10, C22, C24 Конденсатор 100 нФ 4 Керамика В блокнот
C11, C14 Конденсатор 220 пФ 2 Керамика В блокнот
C12, C13 Конденсатор 1 мкФ 2 Электролит на 50В или керамика В блокнот
R1, R12 Резистор

10 Ом

2 В блокнот
R2, R10 Резистор

10 кОм

2 В блокнот
R3, R11 Резистор

33 кОм

2 В блокнот
R4, R9 Резистор

4.7 кОм

2 В блокнот
R5, R7 Резистор

18 кОм

2 В блокнот
R6, R8 Резистор

1 кОм

2 В блокнот
Схема 2: Маломощный блок питания с преобразованием однополярного напряжения в двухполярное
VT1 Биполярный транзистор

2N5551

1 Аналог:KSP42, MPSA42 В блокнот
VT2 Биполярный транзистор

2N5401

1 Аналог:KSP92, MPSA92 В блокнот
VDS1 Выпрямительный диод

1N4007

4 В блокнот
VD1, VD2 Выпрямительный диод

1N4148

2 В блокнот
C1-C4, C6, C7 Конденсатор 2200 мкФ 6 Рабочее напряжение в зависимости от входного В блокнот
C5, C8 Конденсатор 100 нФ 2 В блокнот
R1, R2 Резистор

3.3 кОм

2 В блокнот
Схема 3: Мощный двухполярный блок питания с полу-мостовым выпрямлением
VD1-VD4 Выпрямительный диод

FR607

4 В блокнот
C1, C5 Конденсатор 15000 мкФ 2 Электролит на 50В В блокнот
C2, C3, C7, C8 Конденсатор 1000 мкФ 4 Электролит на 50В В блокнот
C4, C6 Конденсатор 1 мкФ 2 В блокнот
F1-F4 Предохранитель 5 А 4 В блокнот
Схема 4: Мощный блок питания с полу-мостовым выпрямлением
VT1, VT3 Биполярный транзистор

BD139

2 Аналог:BD135 В блокнот
VT2 Биполярный транзистор

BD140

1 Аналог:BD136
Этот проект можно назвать самым масштабным в моей практике, на реализацию этой версии ушло 3 с лишним месяца. Сразу хочу сказать, что на проект потратил достаточно много финансов, к счастью с этим помогли многие люди, в частности хочу поблагодарить нашего уважаемого администратора сайта РАДИОСХЕМЫ за моральную и финансовую помощь. Итак, для начала хочу ознакомить с общей идеей. Она заключалась в создании мощного самодельного автомобильного усилителя (хотя машины пока нет), которая могла бы обеспечить высокое качество звучания и питала бы порядка 10 мощных динамических головок, иными словами - полный ХАЙ-ФАЙ аудиокомплекс для запитки фронта и тыловой акустики. Спустя 3 месяца, комплекс был полностью готов и испытан, должен сказать, что он полностью оправдал все надежды, и не жалко потраченных финансов, нервов и кучи времени.

Выходная мощность достаточно высока, поскольку основной усилитель собран по схеме знаменитого ЛАНЗАРА, который обеспечивает максимальную мощность в 390 ватт, но разумеется усилитель работает не на полной мощности. Этот усилитель предназначен для питания сабвуферной головки SONY XPLOD XS-GTX120L, параметры головки показаны ниже.

>> Номинальная мощность - 300 Вт


>>
Пиковая мощность - 1000 Вт


>>
Диапазон частот 30 - 1000 Гц


>>
Чувствительность - 86 дБ


>>
Выходное сопротивление - 4 Ом


>>
Материал диффузора – полипропилен
.

Помимо сабвуферного усилителя, в комплексе стоят также 4 отдельных усилителя, два из которых выполнены на известной микросхеме ТДА7384 , в итоге 8 каналов по 40 Ватт предназначены для питания акустики салона. Остальные два усилителя выполнены на микросхеме ТДА2005 , использовал именно эти микросхемы по одной причине - дешевые и обладают недурным качеством звучания и выходной мощностью. Суммарная мощность установки (номинальная) 650 ватт, пиковая доходит до 750 ватт, но разогнать на пиковую мощность трудно, поскольку питание не позволяет этого. Для питания сабвуферного усилителя 12 вольт автомобиля конечно маловато, поэтому использован преобразователь напряжения.

Преобразователь напряжения - пожалуй самая трудная часть всей конструкции, поэтому рассмотрим его чуть подробнее. Особое затруднение вызывает намотка трансформатора. Ферритовое кольцо у нас почти не встречается в продаже, поэтому было принято решение использовать трансформатор от компьютерного блока питания, но поскольку каркас одного трансформатора явно маловат для намотки, то использовались два идентичных трансформатора. Для начала нужно найти два одинаковых БП ATX, выпаять большие трансформаторы, разобрать их и снять все заводские обмотки. Половинки феррита приклеены друг к другу клеем, поэтому их следует подогреть зажигалкой в течении минуты, затем половинки спокойно вынимаются из каркаса. После снятия всех заводских обмоток, нужно отрезать одну из боковых стенок каркаса, желательно отрезать свободную от контактов стенку. Это делаем с обеими каркасами. На последнем этапе нужно прикрепить каркасы друг к другу так, как это показано на фотографиях. Для этого я использовал обыкновенный скотч и изоленту. Теперь уже нужно приступить к намотке.


Первичная обмотка состоит из 10 витков с отводом от середины. Обмотку мотают сразу 6-ю жилами провода 0,8 мм. Сначала по всей длине каркаса мотаем 5 витков, затем изолируем обмотку изоляционной лентой и мотаем остальные 5.


ВАЖНО! Обмотки должны быть полностью идентичны, иначе трансформатор будет жужжать и издавать странные звуки, а также могут сильно нагреваться полевые ключи одного плеча, т.е основная нагрузка будет лежать на плечо с меньшим сопротивлением обмотки. После окончания мы получаем 4 вывода, провода очищаем от лака, скручиваем в косичку и залуживаем.

Теперь мотаем вторичную обмотку. Она мотается по тому же принципу, что и первичная, только содержит 40 витков с отводом от середины. Мотается обмотка сразу 3-я жилами провода 0,6-0,8 мм сначало одно плечо (по всей длине каркаса), затем другое. После намотки первой обмотки ставим поверх изоляцию и мотаем вторую половину идентично первой. В конце провода очищаются от лакового покрытия и покрываются оловом. Последний этап - вставляем половинки сердечника и закрепляем.

ВАЖНО! Не допускать зазора между половинками сердечника, это приведет к повышению тока покоя и к ненормальной работе трансформатора и преобразователя в целом. Закрепить половинки можно скотчем, затем фиксировать клеем момент или эпоксидной смолой. Пока трансформатор оставляем в покое и приступаем к сборке схемы. Такой трансформатор способен обеспечить на выходе двухполярное напряжение в 60-65 вольт, номинальная мощность 350 ватт, максимальная - 500 ватт, пиковая - 600-650 ватт.

Задающий генератор прямоугольных импульсов выполнен на двухканальном ШИМ контроллере TL494 настроенной на частоту 50 кГц. Выходной сигнал микросхемы усиливается драйвером на маломощных транзисторах, затем поступает на затворы полевых ключей. Транзисторы драйвера можно заменить на ВС557 или на отечественные - КТ3107 и другие аналогичные. Полевые транзисторы использованы серии IRF3205 - это N - канальный силовой транзистор с максимальной мощностью 200 ватт. На каждое плечо использовано 2 таких транзистора. В выпрямительной части блока питания использованы диоды серии КД213, хотя подойдут любые диоды с током 10-20 ампер, которые могут работать на частотах 100кГц и более. Можно использовать диоды Шоттки от компьютерных блоков питания. Для фильтрации ВЧ помех использованы два идентичных дросселя, они намотаны на кольцах из компьютерных БП и содержат 8 витков 3-я жилами провода 0,8мм.


Основной дроссель стоит по питанию, намотан на кольце от компьютерного БП (самое большое по диаметру кольцо), он намотан 4-мя жилами провода с диаметром 0,8 мм, количество витков - 13. Питание преобразователя подается тогда, когда на вывод ремоут контроля подают стабильный плюс, тогда замыкается реле и преобразователь начинает работу. Реле нужно использовать с током 40 ампер и более. Полевые ключи установлены на небольшие теплоотводы от компьютерного БП, они прикручены к радиаторам через теплопроводящие прокладки. Резистор снаббера - 22 ом должен чуть перегреваться, это вполне нормально, поэтому нужно использовать резистор с мощностью 2 ватт. Теперь вернемся к трансформатору. Нужно фазировать обмотки и запаять его на плату преобразователя. Фазируем сначала первичную обмотку. Для этого нужно начало первой половины обмотки (плеча) припаять к концу второй или наоборот - конец первой к началу второго.


При неправильной фазировке преобразователь либо вообще не заработает, либо слетят полевики, поэтому желательно при намотке отметит начало и конец половинок. Вторичная обмотка фазируется точно по этому же принципу. Печатная плата - в .


Готовый преобразователь должен работать без свистов и шумов, на холостом ходу теплоотводы транзисторов могут незначительно перегреваться, ток покоя не должен превышать 200 мА. После завершения ПН можете считать, что основная работа выполнена. Уже можно приступить к сборке схемы ЛАНЗАРА, но об этом в следующей статье.

Обсудить статью УСИЛИТЕЛЬ СВОИМИ РУКАМИ - ИСТОЧНИК ПИТАНИЯ

В этом разделе предложены некоторые варианты реализации ПП блоков питания для усилителей. Схему БП с разделением батареи конденсаторов резисторами сопротивлением в пределах 0.15-0.47 Ом было предложено Л.Зуевым:

Разводка платы БП УНЧ Владимиром Лепехиным в формате lay

Для УНЧ Натали были разведены платы под электролитические конденсаторы диаметр посадки d=30, 35 и 40 мм с выводами snap-in

Схема со стабилизированным питанием для УН-а и операционного усилителя на м/с M5230L

Для проекта усилитель ASR на MOSFET с токовой ОООС от Maxim_A (Андрей Константинович), В.Лепехин развел платы под маломощный БП для УН-а усилителя и мощный БП для выходного каскада.

плата БП маломощный top

плата БП маломощный bottom

плата БП УНЧ top

плата БП УНЧ bottom

Для в реализации двойное моно будут использованы БП на таких ПП:

БП УНЧ V2012ЭА

Этот БП используется для питания ВК (выходного каскада). На плате можно устанавливать электролиты с креплением Snap-in диаметром до 30 мм, предусмотрена посадка под диоды в корпусах ТО220-3 и ТО220-2, что расширяет номенклатуру применяемых диодов. Габариты ПП 66 х 88 мм.

Для питания УН-а при раздельном питании, будет использована такая плата БП:

БП УНЧ V2012ЭА

Габариты ПП 66 х 52 мм. Посадка диодов универсальная можно поставить выводные и в корпусе ТО220-2, посадка электролитов диаметром до 25 мм.

Понравилась статья? Поделитесь с друзьями!